ION EXCHANGE RESINS

DUOLITE A 161 PLUS

ENGINEERING DATA SHEET COUNTER-CURRENT REGENERATION

Duolite a 161 PLUS is a macroporous type 1 strong base Anion Exchange Resin. These data provide information to calculate the silica leakage and operating capacity of Duolite A 161 PLUS used with Counter-current regeneration. The general properties of Duolite A 161 PLUS are described in the Product Data Sheet.

SILICA LEAKAGE

The average silica leakage is obtained by multiplying the basic leakage value from Table 1 by the correction factors A,B and C from Tables 2 to 4

Leak = $Leak_0 \times A \times B \times C$

TABLE 1 : Basic Silica Leakage versusNaOH regenerant level		
NaOH g / L	Leakage ppm SiO ₂ (Leak ₀)	
40	0.012	
50	0.010	
60	0.008	
70	0.006	
80	0.005	
100	0.003	
120	0.002	

TABLE 2 : Leakage Correction Factor A versus Silica to Total AnionsRatio.	
SiO ₂ %	Factor A
1	0.2
5	0.5
10	1.0
25	2.5
50 75	5.0
90	10.0
90	14.0
TABLE 3 : Leakage Correction Factor B versus water Temperature	
Water ^o C	Factor B
5	0.7
10	0.8
15	1.0
25	1.5
35	2.3
45	3.3
TABLE 4 : Leakage Correction Factor C versus Regenerant Temperature	
NaOH ^o C	Factor C
10	1.65
15	1.37
25	1.00
35	0.76
45 50	0.58 0.50
30	0.30

TABLE 5 : Suggested Operating Conditions

60°C (OH ⁻) 90°C (Cl ⁻)
1000 mm (prefearbly > 1400 mm)
5 to 40 BV* / hr
50 m / hr
NaOH
40 to 120 g/L
2 to 8 BV/ hr (minimum contact time : 30 minutes)
3% to 5%
Minimum 2 BV at regeneration flow rate
Same as service flow rate.
n ³ resin

Influent Limitations	
Free chlorine	- Nil
Turbidity	- < 1 NTU
Iron & heavy metal	- < 0.1 ppm

OPERATING CAPACITY

The operating capacity of Duolite A 161 PLUS is obtained by multiplying the basic capacity value from Table 6 by the correction factors D to G from Tables 7 to 10.

$Cap = Cap_0 \times D \times E \times F \times G$

TABLE 6 : Basic capacity versus NaOH regenerant level (Counter - current regeneraion)	
NaOH g/L	Capacity $eq/L(Cap_0)$
40	0.56
50	0.60
60	0.63
70	0.66
80	0.68
100	0.71
	0171
120	0.74
TABLE 7 : Capaci versus Ratio.	0.74 ty Correction Factor D Sulphate to Total Anions
TABLE 7 : Capaci versus	0.74 ty Correction Factor D
TABLE 7 : Capaci versus Ratio.	0.74 ty Correction Factor D Sulphate to Total Anions
TABLE 7 : Capaciversus versus Ratio. SO4 % SO4 %	0.74 ty Correction Factor D Sulphate to Total Anions Factor D
TABLE 7 : Capaci versus Ratio. SO4 % 0	0.74 ty Correction Factor D Sulphate to Total Anions Factor D 0.92
TABLE 7 : Capaci versus Ratio. $SO_4 \%$ 025	0.74 ty Correction Factor D Sulphate to Total Anions Factor D 0.92 0.96

TABLE 8 : Capacity Correction Factor E versus CO2 to Total Anions Ratio.	
CO ₂ %	Factor E
0	0.97
20	1.00
30	1.02
50	1.05
75	1.08
99	1.12

sus NaOH Counter - on)		Correction Fac a to Total Ani Temperature	ions Ratio
city eq / L (Cap ₀)	% SiO, Factor F		or F
0.56		25° C	35° C
0.60	5	0.98	0.99
0.63	25	0.93	0.96
0.66	50	0.83	0.90
0.68	75	0.80	0.88
0.71 0.74	90	0.73	0.82
on Factor D to Total Anions		lica Endpoint	(D SiO ₂ =
Factor D	difference between average leakage and endpoint)		
0.92	SiO ₂ (ppb)	Facto	or G

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
---	--	--

SAFE HANDLING INFORMATION

A material Safety Data Sheet, Material handling & storage sheet are available for Duolite products. To obtain a copy contact Auchtel representative

CAUTION

Acid and basic regenerant solutions are corrosive and should be handled in a manner that will prevent eye and skin contact. Nitric acid and other strong oxidizing agents can cause explosive type reactions when mixed with Ion Exchange Resins. Proper design of process equipment to prevent rapid buildup of pressure is necessary if use of an oxidizing agent such as nitric acid is contemplated. Before using strong oxidizing agents in contact with Ion Exchange Resins, consult sources knowledgeable in the handling of these materials.

The suggestions and data in this bulletin are based on information we believe to be reliable. They are offered in good faith, but without guarantee, as conditions and methods of use of our products are beyond our control. We recommend that the prospective user determine the suitability of our materials and suggestions before adopting them on a commercial scale. The Company maintains a policy of continuous development and reserve the right to amend any specification without notice.DUOLITE is a trademark of Rohm and Hass Company, Philadelphia, U.S.A. and Auchtel Products Ltd. are users of the same in India.

Auchtel ProductsLtd.,142 C,Victor House, N.M.Joshi Marg, Lower Parel(w),Mumbai-400 013 Tel. 91-22-2493 3975, Fax. 91-22-2493 9755, 2497 4211 E-mail - auchtel@vsnl.com C:\LABORATO\LIT`TURE.84 REV 02 / MAY 2 K